
Essentials of Java 
Performance Tuning

Dr Heinz Kabutz   Kirk Pepperdine 
Sun Java Champions



© 2006 Kirk Pepperdine & Heinz Kabutz

Our Typical Story
• Customer JoGoSlo Ltd calls us in desperation
> Millions of Rands invested
> Users complain about poor performance
>Customers consider abandoning the project

• Developers in a panic
> 6 man months already invested with no results
> Can almost reproduce the problem
> Still had some ideas what to do
> However management has lost confidence

• We have 5 days to diagnose problem



© 2006 Kirk Pepperdine & Heinz Kabutz

Solve All Your Performance 
Problems



© 2006 Kirk Pepperdine & Heinz Kabutz

Speakers
• Kirk Pepperdine
> Engaged around the world to solve Java performance 

problems
> http://www.javaperformancetuning.com



© 2006 Kirk Pepperdine & Heinz Kabutz

Speakers
• Heinz Kabutz
> The Java Specialists’ Newsletter
> Based in Cape Town
> http://www.javaspecialists.co.za



© 2006 Kirk Pepperdine & Heinz Kabutz

Project in Crisis
• What do people do under stress?
> Decision making skills are much impaired
> Not in learning mode
> Almost impossible to introduce new tools
>Tend to rely on the familiar

• Performance tuning requires own skillsets
> Takes time to learn
> When is a good time to learn CPR?



© 2006 Kirk Pepperdine & Heinz Kabutz

Panic Attack
• Lots of finger pointing between groups
• Without real evidence developers start to guess
> Start changing code (that’s what developers do)
>Convert Vector to ArrayList
>Convert String to StringBuffer
>Add more threads
>Add more memory
>Focus on database interactions

> with unpredictable results…
• How do we avoid this?



© 2006 Kirk Pepperdine & Heinz Kabutz

Measure,
 

don’t guess!



© 2006 Kirk Pepperdine & Heinz Kabutz

Heap Usage after GC



© 2006 Kirk Pepperdine & Heinz Kabutz

Typical Production Environment



© 2006 Kirk Pepperdine & Heinz Kabutz

Hardware Resources



© 2006 Kirk Pepperdine & Heinz Kabutz

Java Virtual Machine Resources



© 2006 Kirk Pepperdine & Heinz Kabutz

Application



© 2006 Kirk Pepperdine & Heinz Kabutz

People

• System usage patterns
> What they are doing?

• Rate of doing work?



© 2006 Kirk Pepperdine & Heinz Kabutz

Forward Propagation of Actions
• People telling application what to do
• Application tells the JVM what it needs done
> Direct consequence of what the people are asking
> And how application was coded

• JVM tells the hardware what it needs done
> Direct consequence of what the application is asking
> And how JVM was coded and configured



© 2006 Kirk Pepperdine & Heinz Kabutz

Backward Propagation of Trouble
• If hardware does not have enough capacity, people 

will see bad response times
• If JVM is incorrectly configured, people will see bad 

response times
• If application is suffering from contention, people 

will see bad response times
• Therefore, the only information you start with is that 

people are experiencing poor response times
• What to do next?



© 2006 Kirk Pepperdine & Heinz Kabutz

W5 of Investigative Journalism
• Five questions asked by investigators:
> Who ?
>Which resource is exhibiting the problem?

> What ?
>Observation: what do the users see?

> Where ?
>Which layer is exhibiting the problem?

> When ?
>Are there any peculiarities about when the problems occur?

> Why ?
>An explanation of the observation from system perspective



© 2006 Kirk Pepperdine & Heinz Kabutz

Typical Production Environment
What

Where

Who



© 2006 Kirk Pepperdine & Heinz Kabutz

Plan of Action
• Review or set the performance targets
• Layer by layer performance investigation
• Start with hardware
> Work outward until we find overextended resource 

• Need a repeatable test
> Need to know what the people are doing
> Need a test harness
> Need a realistic test environment



© 2006 Kirk Pepperdine & Heinz Kabutz

JoGoSlo Test Environment
• Database did not have adequate amount of data
> Solution: Cloned the production database 

• Did not have a test harness
> Solution: Introduced Apache JMeter



© 2006 Kirk Pepperdine & Heinz Kabutz

Test Harness
• Software that simulates realistic user activity
> Includes normal activity, coffee breaks, user mistakes
> People will use system in unexpected ways

• Good test harness:
> Easily scripted to create our usage patterns
>Randomize test data input
>Ability to randomize think times
>Validate responses from server

> Monitor response times and other system parameters



© 2006 Kirk Pepperdine & Heinz Kabutz

Test Harness: Apache JMeter
• Project by Apache Software Foundation
> Open source

• Used extensively for testing web applications
> Can also be applied in other environments

• http://jakarta.apache.org/jmeter/index.html



© 2006 Kirk Pepperdine & Heinz Kabutz



© 2006 Kirk Pepperdine & Heinz Kabutz

Usage Pattern

Randomized
Timer

Traffic Recorder



© 2006 Kirk Pepperdine & Heinz Kabutz

Parameterised 
input



© 2006 Kirk Pepperdine & Heinz Kabutz

Realistic Test Environment
• Production environment?
> Not desirable and usually not an option

• QA environment should
> Perfectly resemble your production environment
>Data sizes, memory sizes, cache sizes, disk speeds, network 

speeds, should be the same
> May need to consider the “when”
>Sometimes have to add external elements to test

• Don’t extrapolate!
> You do not know when you will hit the wall



© 2006 Kirk Pepperdine & Heinz Kabutz

Performance Wall

When will you hit the wall?



© 2006 Kirk Pepperdine & Heinz Kabutz

Who and Where
• Turn on monitoring of hardware
• Use the “what” to turn on additional low-impact 

monitoring, such as:
> Verbose GC logging
> -Xloggc:<filename>

> JDBC logging
> e.g. p6spy

> JNI logging
> RMI logging
> Socket logging

• Beware of Heisenberg Uncertainty!
> “You can’t observe a system without affecting the system”



© 2006 Kirk Pepperdine & Heinz Kabutz

Run the Benchmark
• Isolate your system
• Start system from known consistent point
• Run JMeter or other test harness against system
• Observe if the “what” matches the users’ 

experiences
• Failures in the system should invalidate the run
• Record everything
> Start time, end time, observations, response time, 

configurations, date of birth, starsign, basically anything 
that you might or might not need

> Use a physical notepad – mouse in left hand



© 2006 Kirk Pepperdine & Heinz Kabutz

How Long is Each Run?
• System must be in a steady state
> Issues about test harness that need to be considered
>Beyond the scope of this talk

• System should exhibit the problems experienced by 
users
• Can be 30 seconds or 30 days
> Typically an hour

• Burn in the problem



© 2006 Kirk Pepperdine & Heinz Kabutz

Analysis
• Hardware
> Carefully examine the output from monitoring and 

eliminate underutilised components from the list
> Fully utilised components are bottlenecks

• CPU
> Look at execution profile, such as –Xrunhprof

• Memory
> Look at GC, caching, large DB queries, memory leaks

• IO Wait
> Will prevent CPU from being fully utilised

• If no hardware bottlenecks, look at the JVM layer



© 2006 Kirk Pepperdine & Heinz Kabutz

Java Virtual Machine
• Assuming hardware does not show problem
• Heap memory
> Not enough memory in virtual machine

• Lock Contention
> Excessive stop-the-world garbage collection

• If no JVM bottlenecks, look at application layer



© 2006 Kirk Pepperdine & Heinz Kabutz

Java Application Layer
• Thread lock contention
> Only thing that you would not have diagnosed by now
> Get thread dump
>See what they are waiting on
>Eliminate the expected

• If you have not found the problem by now, examine 
your testing process
> It might help confirming that you have correctly simulated 

the users
>Go visit the floor
>Examine run logs



© 2006 Kirk Pepperdine & Heinz Kabutz

Bluedragon ThreadDump
Full thread dump Java HotSpot(TM) Server VM (1.4.2_08-b03 mixed mode):
 "RMI ConnectionExpiration-[192.168.0.15:34113]" daemon prio=1 

tid=0x0892f658 nid=0x2d7a waiting on condition [5b86f000..5b86f494]
  at java.lang.Thread.sleep(Native Method)
  at sun.rmi.transport.tcp.TCPChannel$Reaper.run(TCPChannel.java:447)
  at java.lang.Thread.run(Thread.java:534)
 
 "RMI TCP Connection(902)-192.168.0.15" daemon prio=1 tid=0x41e112b8 

nid=0x2d7a runnable [5ccff000..5ccff414]
  at java.net.SocketInputStream.socketRead0(Native Method)
  at java.net.SocketInputStream.read(SocketInputStream.java:129)
  at java.io.BufferedInputStream.fill(BufferedInputStream.java:183)
  at java.io.BufferedInputStream.read(BufferedInputStream.java:201)
  - locked <0x49978800> (a java.io.BufferedInputStream)
  at java.io.FilterInputStream.read(FilterInputStream.java:66)
  at sun.rmi.transport.tcp.TCPTransport.handleMessages(TCPTransport.java)
  at sun.rmi.transport.tcp.TCPTransport$ConnectionHandler.run(TCPTransport)
  at java.lang.Thread.run(Thread.java:534)



© 2006 Kirk Pepperdine & Heinz Kabutz

Bluedragon ThreadDump
 "PingThread-8692809" daemon prio=1 tid=0x081a3058 nid=0x2d7a waiting on 

condition [5bda9000..5bda9294]
  at java.lang.Thread.sleep(Native Method)
  at org.exolab.jms.client.rmi.RmiJmsConnectionStub$PingThread.run(

 RmiJmsConnectionStub.java:249)
 
 "EventManagerThread" daemon prio=1 tid=0x083101f8 nid=0x2d7a in 

Object.wait() [5caa9000..5caa9514]
  at java.lang.Object.wait(Native Method)
  - waiting on <0x47aa2800> (a java.lang.Object)
  at java.lang.Object.wait(Object.java:429)
  at org.exolab.jms.events.BasicEventManager.run(BasicEventManager.java)
  - locked <0x47aa2800> (a java.lang.Object)
  at java.lang.Thread.run(Thread.java:534)
 
 "PingThread-18183604" daemon prio=1 tid=0x08136dc8 nid=0x2d7a waiting on 

condition [5cc7f000..5cc7f494]
  at java.lang.Thread.sleep(Native Method)
  at org.exolab.jms.client.rmi.RmiJmsConnectionStub$PingThread.run(
    RmiJmsConnectionStub.java:249)



© 2006 Kirk Pepperdine & Heinz Kabutz

Bluedragon ThreadDump
 "RMI RenewClean-[192.168.0.15:34113]" daemon prio=1 tid=0x081a2c68 

nid=0x2d7a in Object.wait() [5ba10000..5ba10594]
  at java.lang.Object.wait(Native Method)
  - waiting on <0x4858a940> (a java.lang.ref.ReferenceQueue$Lock)
  at java.lang.ref.ReferenceQueue.remove(ReferenceQueue.java:111)
  - locked <0x4858a940> (a java.lang.ref.ReferenceQueue$Lock)
  at sun.rmi.transport.DGCClient$EndpointEntry$RenewCleanThread.run(
    DGCClient.java:500)
  at java.lang.Thread.run(Thread.java:534)
 
 "BoundedThreadPool0-33" prio=1 tid=0x41ec8710 nid=0x2d7a in Object.wait() 

[5ca29000..5ca29594]
  at java.lang.Object.wait(Native Method)
  - waiting on <0x47a5> (a org.mortbay.thread.BoundedThreadPool$PoolThread)
  at org.mortbay.thread.BoundedThreadPool$PoolThread.run(BoundedThreadPool)
  - locked <0x47a520b8> (a org.mortbay.thread.BoundedThreadPool$PoolThread)
 



© 2006 Kirk Pepperdine & Heinz Kabutz

Bluedragon ThreadDump
 "BoundedThreadPool0-32" prio=1 tid=0x5a159ed0 nid=0x2d7a runnable 

[5c9a9000..5c9a9614]
  at java.net.SocketInputStream.socketRead0(Native Method)
  at java.net.SocketInputStream.read(SocketInputStream.java:129)
  at org.mortbay.io.bio.StreamEndPoint.fill(StreamEndPoint.java:99)
  at org.mortbay.jetty.bio.SocketConnector$Connection.fill(SocketConnector)
  at org.mortbay.jetty.HttpParser.parseNext(HttpParser.java:257)
  at org.mortbay.jetty.HttpParser.parseAvailable(HttpParser.java:192)
  at org.mortbay.jetty.HttpConnection.handle(HttpConnection.java:293)
  at org.mortbay.jetty.bio.SocketConnector$Connection.run(SocketConnector)
  at org.mortbay.thread.BoundedThreadPool$PoolThread.run(BoundedThreadPool)
  - locked <0x47a521f8> (a org.mortbay.thread.BoundedThreadPool$PoolThread)



© 2006 Kirk Pepperdine & Heinz Kabutz

Bluedragon ThreadDump
"BoundedThreadPool0-31" prio=1 tid=0x5ad60d78 nid=0x2d7a runnable 

[5c929000..5c929694]
  at org.mortbay.jetty.HttpGenerator.prepareBuffers(HttpGenerator.java:878)
  at org.mortbay.jetty.HttpGenerator.flushBuffers(HttpGenerator.java:681)
  at org.mortbay.jetty.HttpGenerator.complete(HttpGenerator.java:671)
  at org.mortbay.jetty.HttpConnection.doHandler(HttpConnection.java:388)
  at org.mortbay.jetty.HttpConnection.access$1500(HttpConnection.java:38)
  at org.mortbay.jetty.HttpConnection$RequestHandler.headerComplete(
    HttpConnection.java:598)
  at org.mortbay.jetty.HttpParser.parseNext(HttpParser.java:487)
  at org.mortbay.jetty.HttpParser.parseAvailable(HttpParser.java:196)
  at org.mortbay.jetty.HttpConnection.handle(HttpConnection.java:293)
  at org.mortbay.jetty.bio.SocketConnector$Connection.run(SocketConnector)
  at org.mortbay.thread.BoundedThreadPool$PoolThread.run(BoundedThreadPool)
  - locked <0x47a52158> (a org.mortbay.thread.BoundedThreadPool$PoolThread)



© 2006 Kirk Pepperdine & Heinz Kabutz

Bluedragon ThreadDump
 "BoundedThreadPool0-30" prio=1 tid=0x41e2f878 nid=0x2d7a in Object.wait() 

[5c8a9000..5c8a9714]
  at java.lang.Object.wait(Native Method)
  - waiting on <0x47a5> (a org.mortbay.thread.BoundedThreadPool$PoolThread)
  at org.mortbay.thread.BoundedThreadPool$PoolThread.run(BoundedThreadPool)
  - locked <0x47a52298> (a org.mortbay.thread.BoundedThreadPool$PoolThread)
 
 "BoundedThreadPool0-29" prio=1 tid=0x5a4c5650 nid=0x2d7a in Object.wait() 

[5c828000..5c828794]
  at java.lang.Object.wait(Native Method)
  - waiting on <0x47a5> (a org.mortbay.thread.BoundedThreadPool$PoolThread)
  at org.mortbay.thread.BoundedThreadPool$PoolThread.run(BoundedThreadPool)
  - locked <0x47a52108> (a org.mortbay.thread.BoundedThreadPool$PoolThread)
 
 "BoundedThreadPool0-28" prio=1 tid=0x5a4c53f8 nid=0x2d7a runnable 

[5c7a8000..5c7a8814]
  at java.net.SocketInputStream.socketRead0(Native Method)
  at java.net.SocketInputStream.read(SocketInputStream.java:129)
  at org.mortbay.io.bio.StreamEndPoint.fill(StreamEndPoint.java:99)
  at org.mortbay.jetty.bio.SocketConnector$Connection.fill(SocketConnector)
  at org.mortbay.jetty.HttpParser.parseNext(HttpParser.java:257)
  at org.mortbay.jetty.HttpParser.parseAvailable(HttpParser.java:192)
  at org.mortbay.jetty.HttpConnection.handle(HttpConnection.java:293)
  at org.mortbay.jetty.bio.SocketConnector$Connection.run(SocketConnector)



© 2006 Kirk Pepperdine & Heinz Kabutz

Bluedragon ThreadDump
 "BoundedThreadPool0-27" prio=1 tid=0x41e6a640 nid=0x2d7a in Object.wait() 

[5c728000..5c728894]
  at java.lang.Object.wait(Native Method)
  - waiting on <0x47a5> (a org.mortbay.thread.BoundedThreadPool$PoolThread)
  at org.mortbay.thread.BoundedThreadPool$PoolThread.run(BoundedThreadPool)
  - locked <0x47a52338> (a org.mortbay.thread.BoundedThreadPool$PoolThread)
 
 "BoundedThreadPool0-26" prio=1 tid=0x41e693f8 nid=0x2d7a in Object.wait() 

[5c6a8000..5c6a8914]
  at java.lang.Object.wait(Native Method)
  - waiting on <0x47a5> (a org.mortbay.thread.BoundedThreadPool$PoolThread)
  at org.mortbay.thread.BoundedThreadPool$PoolThread.run(BoundedThreadPool)
  - locked <0x47a52248> (a org.mortbay.thread.BoundedThreadPool$PoolThread)
 
 "BoundedThreadPool0-25" prio=1 tid=0x086b1c50 nid=0x2d7a in Object.wait() 

[5c628000..5c628994]
  at java.lang.Object.wait(Native Method)
  - waiting on <0x47a4> (a org.mortbay.thread.BoundedThreadPool$PoolThread)
  at org.mortbay.thread.BoundedThreadPool$PoolThread.run(BoundedThreadPool)
  - locked <0x47a4e180> (a org.mortbay.thread.BoundedThreadPool$PoolThread)



© 2006 Kirk Pepperdine & Heinz Kabutz

Bluedragon ThreadDump
• According to client, system was idle
> Did not accept any more connection requests

• Let’s go back a few slides…
> Why was HttpGenerator.prepareBuffers() being called?



© 2006 Kirk Pepperdine & Heinz Kabutz

Bluedragon ThreadDump
"BoundedThreadPool0-31" prio=1 tid=0x5ad60d78 nid=0x2d7a runnable 

[5c929000..5c929694]
  at org.mortbay.jetty.HttpGenerator.prepareBuffers(HttpGenerator.java:878)
  at org.mortbay.jetty.HttpGenerator.flushBuffers(HttpGenerator.java:681)
  at org.mortbay.jetty.HttpGenerator.complete(HttpGenerator.java:671)
  at org.mortbay.jetty.HttpConnection.doHandler(HttpConnection.java:388)
  at org.mortbay.jetty.HttpConnection.access$1500(HttpConnection.java:38)
  at org.mortbay.jetty.HttpConnection$RequestHandler.headerComplete(
    HttpConnection.java:598)
  at org.mortbay.jetty.HttpParser.parseNext(HttpParser.java:487)
  at org.mortbay.jetty.HttpParser.parseAvailable(HttpParser.java:196)
  at org.mortbay.jetty.HttpConnection.handle(HttpConnection.java:293)
  at org.mortbay.jetty.bio.SocketConnector$Connection.run(SocketConnector)
  at org.mortbay.thread.BoundedThreadPool$PoolThread.run(BoundedThreadPool)
  - locked <0x47a52158> (a org.mortbay.thread.BoundedThreadPool$PoolThread)



© 2006 Kirk Pepperdine & Heinz Kabutz

Addressing the Problem
• Add more hardware
> Often the cheapest solution 
> 100% CPU – is it possible to add faster CPU?
>May not always solve the problem



© 2006 Kirk Pepperdine & Heinz Kabutz

Java Virtual Machine Tuning
• Configuration
> e.g. heap sizing, hotspot compilers, etc.



© 2006 Kirk Pepperdine & Heinz Kabutz

Application Code
• Otherwise, all roads lead back to application
> Implies coding changes
> Expensive, time consuming, error prone
> Need good regression testing

• Well designed code makes changes easier
> DRY (don’t repeat yourself)
> SRP (single responsibility principle)
> Correct design patterns
> http://www.javaspecialists.co.za



© 2006 Kirk Pepperdine & Heinz Kabutz

Application Profiling
• Java has built-in profiling tools
• Run the JVM with –Xrunprof
• Other alternatives available from
> http://www.javaperformancetuning.com



© 2006 Kirk Pepperdine & Heinz Kabutz

This is the Why!
• Profiling is the measurement that tells us “why”
> From there we can implement the fix

• Run benchmark to ensure problem solved
• Regression test
• Have you reached your performance target?
> If not, start from the beginning and find next bottleneck
> When problem #1 is solved, problem #2 might be gone
>Avoid fixing more than one problem at a time



© 2006 Kirk Pepperdine & Heinz Kabutz

Heap Usage after GC

Session timed out



© 2006 Kirk Pepperdine & Heinz Kabutz

JoGoSlo Why?
• Discussions with client suggested database caching
> Suspected cached “SELECT * FROM very_large_table”

• Investigation confirmed memory leak
• Troublesome point
> Users claimed application sometimes recovered

• Question: is this from the database interaction or a 
memory leak in a long-term temporary object?
• Hypothesis: Memory leak could be from 

HTTPSession



© 2006 Kirk Pepperdine & Heinz Kabutz

JoGoSlo Why?
• HTTPSession timeout correlated strongly with 

decrease in memory
> Confirmed with memory profiler
>Output from memory profilers is often very confusing for large 

systems
>This additional information helped us filter the memory profiler

> Bingo!
• The HTTPSession was found to be retaining 

session object, due to the improper scoping of 
Struts Sessions



© 2006 Kirk Pepperdine & Heinz Kabutz

Conclusion
• Don’t measure, guess …
> Then call us!



Essentials of Java 
Performance Tuning

Dr Heinz Kabutz   
heinz@javaspecialists.co.za

Kirk Pepperdine   
kirk@kodewerk.com


